Kunci Jawaban
5 Contoh Soal Luas Permukaan Prisma Segitiga dan Kunci Jawaban
Berikut contoh soal luas permukaan prisma segitiga dan kunci jawaban. Contoh soal 1, Hitunglah luas permukaan prisma dibawah ini.
TRIBUNPADANG.COM - Berikut contoh soal luas permukaan prisma segitiga dan kunci jawaban.
Contoh soal 1
Hitunglah luas permukaan prisma dibawah ini.
Jawaban soal a:
Luas permukaan prisma = (2 x luas alas) + (keliling alas x tinggi)
Luas permukaan prisma = (2 x 20,5 cm x 36 cm) + {(20,5 cm + 20,5 cm + 36 cm + 36 cm) x25 cm}
Luas permukaan prisma = 1.476 cm2 + 2.825 cm2 = 4.301 cm2
Jawaban soal b:
BC2 = (15 cm)2 + (10 cm)2 = 225 cm2 + 100 cm2
BC = √ 325 = 18 cm
Luas permukaan prisma = (2 x luas alas) + (keliling alas x tinggi)
Luas permukaan prisma = (2 x luas ABC) + (AC + AB + BC x CF)
Luas permukaan prisma = (2 x 1/2 x 10 cm x 15 cm) + {(15 cm + 10 cm + 18 cm x 8 cm)}
Luas permukaan prisma = 150 cm + 344 cm = 494 cm2
Baca juga: 5 Contoh Soal Jangka Sorong dan Kunci Jawaban
Contoh soal 2
Perhatikan gambar dibawah ini.
Hitunglah luas permukaan prisma.
Pembahasan
Segitiga ABC dijadikan sebagai alas dan BE sebagai tinggi prisma sehingga diperoleh hasil sebagai berikut.
Luas permukaan prisma = (2 x luas alas) + (keliling alas x tinggi)
Luas permukaan prisma = (2 . luas ABC) + (keliling ABC x BE)
(Tinggi ABC)2 = 62 – 42 = 20
Tinggi ABC = √ 20 = 4,47
Luas permukaan prisma = (2 . 1/2 . 8 . 4,47) + ([8 + 6 + 6] x 10)
Luas permukaan prisma = 35,76 + 200 = 235,76
Contoh soal 3
Gambar diatas merupakan alat pengumpul sampah tanpa pegangan berbentuk prisma segitiga yang dibuat dari plastik. Hitunglah luas plastik yang diperlukan untuk membuat
alat tersebut tanpa pegangan.
Pembahasan
Luas permukaan plastik = (2 x luas ABC) + luas ABED + luas ADFC
Luas permukaan plastik = (2 x 1/2 x 20 x 15) + 20 x 28 + 28 x 15
Luas permukaan plastik = 300 + 560 + 420 = 1.280 cm2
Contoh soal 4
Hitunglah luas permukaan prisma dibawah ini
Pembahasan
Trapesium ABCDE sebagai alas dan BF sebagai tinggi prisma sehingga diperoleh hasil sebagai berikut.
Luas ABCDE = 2 x luas trapesium
Luas ABCD = 2 x 1/2 . (20 + 14) cm . 8 cm = 272 cm
(CD)2 = 82 + 62 = 100
CD = √ 100 = 10 cm
Luas permukaan prisma = (2 x luas ABCDE) + (keliling alas x tinggi)
Luas permukaan prisma = (2 x luas ABCDE) + (AB + AE + BC + CD + ED x BF)
Luas permukaan prisma = (2 x 272 cm ) + (16 cm + 14 cm + 14 cm + 10 cm + 10 cm x 30cm)
Luas permukaan prisma = 544 cm + 1.920 cm = 2.464 cm2
Contoh soal 5
Seorang tukang akan membuat bak mandi dengan ukuran panjang = 90 cm, lebar = 70 cm dan tinggi 80 cm. Jika sisi-sisi tegak bak dibuat dengan tebal 10 cm, tentukan luas permukaan bak bagian dalam.
Pembahasan
Panjang bak bagian dalam = 90 cm – 10 cm – 10 cm = 70 cm
Lebar bak bagian dalam = 70 cm – 10 cm – 10 cm = 50 cm
Tinggi bak bagian dalam = 80 cm
Luas permukaan bak bagian dalam = Luas alas + (keliling alas x tinggi)
Luas permukaan bak dalam = (70 x 50) + (70 + 70 + 50 + 50) x 80
Luas permukaan bak bagian dalam = 3.500 + 19.200 = 22.700 cm2
(soalfismat.com)
Kunci Jawaban Bahasa Indonesia Kelas 11 Halaman 78: Soal Teks Ceramah dan Penjelasannya |
![]() |
---|
Kunci Jawaban Bahasa Indonesia Kelas 8 Halaman 39-41 Kegiatan 2.5: Menceritakan Kembali Teks Iklan |
![]() |
---|
Kunci Jawaban Bahasa Indonesia Kelas 9 Halaman 107 Kurikulum Merdeka: Mengamati Pidato |
![]() |
---|
Kunci Jawaban Bahasa Indonesia Kelas 8 Kegiatan 2.4 Halaman 37-38 Tentang Penyampaian Iklan |
![]() |
---|
Kunci Jawaban Bahasa Indonesia Kelas 8 Halaman 14–15: Kegiatan 1.6 Struktur dan Kaidah Teks Berita |
![]() |
---|
Isi komentar sepenuhnya adalah tanggung jawab pengguna dan diatur dalam UU ITE.